Questions on Particle Physics MS

1. Charge on strange quark $=-1 / 3$ (1)

Conservation law:
Charge $-(-1)+(+1) \rightarrow(0)+X / b y$ charge conservation (1)
X is neutral (1)
Particle X is a meson (1)
Baryon number conservation $(0)+(+1) \rightarrow(+1)+(0)(\mathbf{1})$ 2

OR discussion in terms of total number of $q+\bar{q}=5$ OR $\Sigma q-\bar{q}=3$
Composition of X is $s \bar{d}[0 / 3$ if not $q \bar{q}](\mathbf{1})$
Justify S quark:
This is not a weak interaction/only a weak interaction can change quark type/this is a strong interaction/strangeness is conserved/ quark flavour cannot change (1)

Justify $\overline{\mathrm{d}}$ quark:
X neutral; $s-1 / 3 ; \bar{d}+1 / 3$. [e.c.f. if $s=-1 / 3$ in first line.]
For the third mark accept any $q \bar{q}$ pair that creates a meson of the charge deduced for X above. (1)
[The justification for both q and $\overline{\mathrm{q}}$ can be done also by tracking individual quarks]
2. Gluon

Weak
Electromagnetic
Gravitational
Gravitational circled
3. Ω^{-}is a baryon [no mark]
p is a baryon/need to conserve baryon number
Strangeness - 3 needs three quarks
p is uud
Ω^{-}is sss
All Ks quark-antiquark pairs
K^{-}is $\overline{\text { us }} \mathrm{K}^{+}$is $\mathrm{us}^{-} \mathrm{K}^{0}$ is ds [all right] 4
4. (a) Lots of energy needed to produce the extra mass 2
(b) Conservation laws:
charge
lepton number baryon number
(c) They annihilate one another giving rise to γ ray $/ \gamma$ photon

$$
\begin{aligned}
& \text { Energy of } \gamma \text { ray } \\
& =2(0.00055)(930 \mathrm{MeV})
\end{aligned}
$$

= 1.0/1.02/1.023 MeV
5. How properties of particles and antiparticles compare

Same mass/properties, opposite charge (1)
Energy
$E=m c^{2}=1.67 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2} \mathrm{~J}[m$ or c subbed correctly] (1)
$=1.503 \times 10^{-10} \mathrm{~J}$ [u.e. if comparison made here]
$=1.503 \times 10^{-10} / 10^{9} \times 1.6 \times 10^{-19} \mathrm{GeV}$ (1)
$=0.94 \mathrm{GeV}$ (1)
[jump to " $\approx 1 \mathrm{GeV}$ " omitting last line scores (1)(1)×]

Survival of anti-atom

Anti-proton meets proton OR positron meets electron OR (anti-atom) meets atom (1)
(leads to) annihilation (1)
Table

	Meson	Baryon	Lepton		
proton		\checkmark		(1)	
antiproton		\checkmark			
electron			\checkmark	(1)	
positron			\checkmark		

Quark structure
Antiproton: $2 \times-2 / 3$ (anti u) $+1 \times+1 / 3$ (anti d) (1)
$=-1(\mathrm{e}$ not needed) (1)
[$3 \times \mathrm{d} \Rightarrow-1$ scores $\times \mathrm{x}$]
2
6. Explanation
energy gained by electron accelerated through $1 \mathrm{~V} / W=Q V(\mathbf{1})$
$W=1.6 \times 10^{-19} \mathrm{C} \times 1 \mathrm{~V}=1.6 \times 10^{-19} \mathrm{~J}$ (1)

Unit of mass

$\Delta E=c^{2} \Delta m$ so $\Delta m=\Delta E / c^{2} \mathbf{(1)}$
GeV is energy $\Rightarrow \mathrm{GeV} / c^{2}$ is mass (1)
Mass of Higgs boson
$m=115 \times\left[10^{9}\right] \times 1.6 \times 10^{-19} /\left(3 \times 10^{8}\right)^{2}(\mathbf{1})$
$=2.04 \times 10^{-25} \mathrm{~kg}(\mathbf{1})$
Antiparticle
Same mass and opposite charge (1)
[Accept Particle and its antiparticle annihilate $(\rightarrow$ photons)]

Explanation of need for a magnetic field and why it can be small
Force deflects particles/force produces circular motion (1)
Force is perpendicular to motion/force provides centripetal force (1)
r is large or curvature is small/gentle (1)
reference to $B=p / r Q$ to show why small B is needed (1) 4
7. "The standard model"

Everyday matter/atoms: p,n, e [maybe in two places] (1)
Protons / neutrons are made from quarks (1)
p: uud and n:udd (1)
show charge of either $[p: u(+2 / 3) u(+2 / 3) d(-1 / 3) \Rightarrow+1$ OR $n: u$
$(+2 / 3) \mathrm{d}(-1 / 3) \mathrm{d}(-1 / 3) \Rightarrow 0]$ (1)
All baryons have three quarks (1)
Hadrons contain quarks (1)
Electron is fundamental/leptons are fundamental (1)
Electron-neutrino created during β-decay (1) Max 6
8. Description of production of a beam of electrons

Hot filament / cathode /plate (1)
Thermionic emission (1)
Anode/other electrode positive wrt source (can be dia) (1)
Collimator/hole/focusing detail (1)
Control of beam (e.g. with E or B (1))
Vacuum (1)
Cyclotron:
Magnetic field \rightarrow circles (1)
Acceleration across gap (1)
Repeated accelerations / details of voltage variation (1)
LINAC:
At least 2 sections connected to a.c. (1)
Details of variation of voltage with time / synchronisation (1)
Acceleration across each gap / attraction to + section (1)
Detail of lengths of tubes (1)
Max 6
High energy needed to break particles into constituents and/or create new particles (1)
High energy linked to short wavelength, e.g. $\lambda=h / p$ (1)
Short wavelength comparable to dimensions of structures / mention of diffraction (1)
Electrons easily detected because charged (1)
High energy needed to get close to nuclei (1)

